毫米波电路相位精度受什么影响?

 行业新闻     |      2022-05-27 17:48:06    |      爱彼电路

从自动驾驶车辆上使用的防碰雷达系统到第五代高数据速率新无线网络技术,毫米波电路的应用领域正在快速增长。许多应用正在促进工作频段往更高的频率变化(如>24GHz)。与低频电路相比,高频射频/微波电路易受电路材料和加工工艺的影响。虽然电源线和数字控制等电路功能可以用低成本FR-4电路材料,但是射频、微波和毫米波电路需要性能更好的电路材料,以尽量减少信号损耗和畸变。许多具有很多不同电气功能的多层混合信号PCB通常由不同类型的电路材料混合压制而成,应选择最适合的材料用于该层电路功能。

高频PCB通常基于三种常见电路传输线技术,微带线电路、带状线电路或接地共面波导(GCPW)电路。基于单端传输线描绘了每种电路的电场(E)和电流密度,可以看到每种电路类型的结构各不相同,其中电场为导体与地层的耦合区域。对于差分电路,使用的两根导线其间也存在耦合。例如,对于一个差分微带线电路,电场将在顶层的信号导体之间和顶层到地层的导体之间相互耦合。尤其是在较高频率下,使用这些传输线的高频电路极易受电路材料参数和PCB加工的影响。

这三类高频传输线的性能均由介质材料决定。在带状线电路中,导体被介质材料环绕,在微带线电路和GCPW电路中,电场延伸到介质材料以外,包含电路周围的空气构成的电路的整个电磁环境,因此这两种电路中的波的传播的介电常数(Dk)综合了基板材料的Dk和空气的Dk(大约为1)。这种情况下的介电常数就是所谓的有效Dk。

电路中可用信号功率往往会随着频率增加而降低,因此需要密切注意而尽量减少高频电路中的信号损耗。保持阻抗匹配是降低高频电路或系统中的互连元件损耗的关键,信号发生器和负载之间的传输线。由于信号能量会转化成热量,所以即使发生器和负载阻抗匹配,无源元件也会由于自身介质和导体损耗而出现一定量的插入损耗。但是,当阻抗不匹配时,传输连接处的信号反射再会引起回波损耗,从而传输线的总损耗会进一步增大,从匹配时的标称3dB增加到6dB。当必须保证接收端信号功率时,插入损耗和回波损耗必须最小化。将不同厚度电路中的插入损耗进行分解,对于基板介质材料较薄的电路,导体损耗占主要部分,此时信号与地平面的间隔不大,电场更为集中在导体下方的电路,对于基板介质较厚的电路,信号与地平面间隔较大,此时导体损耗占插入损耗比例较小,介质损耗占主要部分。

对高频设计通常需要一个选择薄的基板材料,且高频下低插入损耗是一个关键指标。这种情况下,铜箔的类型也成为一个重要的考虑因素,越光滑的铜箔插入损耗越小。为降低导体损耗可以选择较光滑的铜箔来降低导体。尽管如此,仍可以通过控制介质损耗来降低插入损耗。因此,选用一种损耗因子(Df)较低的材料仍可以降低电路的总插入损耗。例如材料的损耗因子Df为0.0037,如果使用Df为0.0010的材料时,介质损耗(和插入损耗)进一步降低。

在很多高频电路中,相位是一个重要的电气参数,尤其是在毫米波应用(例如汽车雷达和5G无线网络)中,相位是许多先进调制方式的基本信息。电路需要保持一致的相位响应,从而使雷达和无线通信等系统能够提供可靠信息。电路相位响应通常以相位角或相速度来表征,例如,理想正弦波的电路的一个周期或波长的相位角响应为360°。举例说明了对于某一电路材料(Dk值为3.0),在7.6GHz条件下,以360°相位角响应或一个波长的物理长度下的微带线电路为参考,不同的参数变化对于相位角的影响。

基于相位响应的毫米波电路,相位角或相位响应一致性是一个重要的性能参数。虽然1英寸长度的微带线电路在7.6GHz条件下的相位角响应刚好一个周期(360°),但对于77GHz雷达,在Dk值为3.0的基板材料上加工的具有相同物理长度的微带线电路却有大于4,000°的相位角响应,相位角变化对于电路的微小变化异常敏感。而对于毫米波雷达传感器的性能,即使小至±30°的相位角变化也可能造成雷达检测错误(例如汽车防撞系统中的雷达检测)。对于如在5G NR系统中使用的26GHz和28GHz频率的频率越低的毫米波电路,相位响应对于调制网络准确性同样重要。频率越高、波长越小,电路受相位角变化的影响越大。

在毫米波频率由于波长短,PCB的性能受很多变量的影响。首先需要考虑是信号从连接器馈入到PCB线路板上带来的影响。在连接器信号馈入口处的阻抗异常,或阻抗变化可能造成信号反射、回波升高和畸变。高频连接器与PCB的连接尽管距离较短,阻抗异常仅发生在2.54mm左右的距离上,但是该长度在毫米波频率下可能与小数倍波长相接近,从而造成波形畸变。例如,40GHz下的波长为0.46mm与2.54mm就非常接近,2.54mm的变化就可能造成40GHz信号异常。在较低频率下连接器带来的阻抗异常影响较小,因为在低频率的波长较长,该短距离上的影响较少。在某小数倍波长长度的阻抗异常可能影响毫米波电路性能,那么具体多少长度才算呢?通常半波长的阻抗异常通常会影响性能,四分之一波长异常也可能影响毫米波电路性能,但是与半波长相比影响会小一些较小。一般八分之一或更长波长的阻抗异常将影响波特性,反过来讲,保持在十分之一或更短波长距离,可以尽量减少在毫米波频率下的电路性能问题。

在毫米波频率下,保证基板厚度和导体宽度等电路特性小于相应频率下的十分之一波长能够避免产生性能异常,避免不必要谐振。例如,在工作频率下、具有二分之一波长厚度的电路基板上制作的毫米波电路会在信号层和地层之间产生谐振条件。工作频率下二分之一波长的导线宽度也将在电路导体宽度上产生谐振条件。将基板厚度和导体宽度保持在工作频率下十分之一或更短波长,可以避免发生不必要的谐振条件。爱彼电路是专业高精密PCB电路板研发生产厂家,可批量生产4-46层电路板,线路板,高频线路板,高速电路板,混压电路板,HDI线路板等,定位高精密!高难度!高标准!